
Design Automation for Intelligent Automotive
Systems

Shuyue Lan∗, Chao Huang∗, Zhilu Wang∗, Hengyi Liang∗, Wenhao Su† and Qi Zhu∗
∗ Northwestern University

† University of Michigan, Ann Arbor

Abstract—With rapid advancement of advanced driver as-
sistance systems (ADAS) and autonomous driving functions,
modern vehicles have become ever more intelligent than before.
Sophisticated machine learning techniques have being developed
for vehicle perception, planning and control. However, this also
brings significant challenges to the design, implementation and
validation of automotive systems, stemming from the fast-growing
functional complexity, the adoption of advanced architectural
components such as multicore CPUs and GPUs, the dynamic and
uncertain physical environment, and the stringent requirements
on various system metrics such as safety, security, reliability,
performance, fault tolerance, extensibility, and cost. To address
these challenges, new design methodologies, algorithms and tools
are greatly needed. This paper will discuss the challenges in
designing next-generation connected and autonomous vehicles,
and the need of design automation techniques to tackle them.

I. INTRODUCTION

The last decades have witnessed the rapid advancement
of advanced driver assistance systems (ADAS) [1] and au-
tonomous driving functions in vehicles. Active safety features
such as lane keeping, collision avoidance, and road sign
recognition have been successfully developed and deployed.
A major driving force behind such advancement is the ap-
plication of machine learning (ML) techniques in vehicle
perception of the surrounding environment, and in vehicle
planning and control based on the perception results.

However, these ML-based functions also bring significant
challenges to the design, implementation and validation of
automotive electronic systems. First, many of the current ML
techniques, particularly those based on deep neural networks,
do not provide sufficient robustness and predictability in their
performance (e.g., consistent accuracy in object recognition
under changing environment) for ensuring automotive safety.
Moreover, the implementation of those ML techniques is of-
ten resource-consuming and computationally-expensive. This
makes it difficult for the corresponding functions to meet the
strict real-time constraints in vehicles (e.g., functions such as
pedestrian detection has to be successfully carried out within
a hard deadline to avoid fatal accidents), especially when
considering the cost sensitivity in automotive industry and
hence the always-limited resources in production vehicles.

To address above challenges in applying ML techniques
to safety-critical and time-critical automotive systems, a new
set of design methodologies, algorithms and tools is greatly
needed, to provide an automated, systematic, and formalized
process for automotive system design, implementation and val-
idation. These design automation techniques should ensure the

system robustness and reliability under dynamic and uncertain
physical environment and operation condition, guarantee the
system timing behavior with limited computational and com-
municational resources, and meet the stringent requirements
on a variety of other metrics such as security, fault tolerance
and extensibility.

AI/ML	Algorithm	
Design	

• Functionality
• Performance
• Efficiency

Verification	&	
Testing

• Robustness
• Reachability
• Stability

System	
Implementation

• Timing	constraints
• System	metrics
• Resource	constraints

Fig. 1. Addressing ML functions in automotive systems.

In this paper, we will discuss the challenges in applying ML
techniques to next-generation connected and autonomous ve-
hicles, and examine the need of design automation techniques
to tackle these challenges. As shown in Fig. 1, we believe
that addressing ML functions in automotive systems involves
multiple aspects across system layers. First, the design of
ML algorithms should consider the system requirements on
functionality, performance and efficiency. Then, verification
and testing methods should be developed to validate the
robustness, reachability and stability of the corresponding
functions. Finally, automated synthesis methods are needed
to ensure that the system implementation of ML functions
meets the timing deadlines, hardware resource constraints, and
requirements on other system metrics.

The rest of this paper is organized as follows. Section II re-
views the application of ML techniques in modern automotive
systems and briefly discuss some of the challenges, focusing
more on the algorithm design aspect. Section III discusses
verification and testing methods for ML-based automotive
systems. Section IV addresses the system implementation of
ML functions.

Paper AI 4.2
978-1-5386-8382-8/18/$31.00 c©2018 IEEE

INTERNATIONAL TEST CONFERENCE 1

II. ML TECHNIQUES IN AUTOMOTIVE SYSTEMS

Thanks to the advancement of modern sensors (LiDAR,
radar, cameras, etc.) and artificial intelligence technology,
automotive systems have become ever more in intelligent
than before. In developing vehicle intelligence, the automotive
industry has been taking two different paths. In the more
conservative path, traditional automotive companies start from
aided driving and make their way gradually to high-level
intelligence. In particular, ADAS systems have been well
developed and adopted by most major automakers, such as
BMW, GM, Honda and Toyota. In the more progressive path,
IT companies and research institutes directly aim to fully
autonomous driving, such as Waymo, Uber, and TuSimple.

Despite the differences in development paths, the major
components in intelligent (autonomous or semi-autonomous)
automotive systems are similar, as shown in Fig. 2. The
in-vehicle systems have three core modules, perception, de-
cision, and control, for collecting information of the sur-
rounding environment via heterogeneous sensors, processing
and analyzing the multi-modal information at real-time with
advanced computing devices, automatically making planning
and control decisions, and continuously actuating the cor-
responding mechanical components. Each module includes
a number of components, some of which are shown in
the figure. At inter-vehicle level, vehicle-to-everything (V2X)
communication module is utilized to exchange information
between vehicles and vehicles (V2V), vehicles and infras-
tructures (V2I), vehicles and pedestrians, etc. By enabling
information sharing among vehicles and surrounding entities,
V2X communication can further improve transportation safety
and efficiency over single-vehicle intelligence. Furthermore,
with V2X, cloud coordination can be adopted to acquire more
computing resources for improving vehicle intelligence. In the
following, we will discuss the application of ML techniques
in each module.

Cloud	
CoordinationV2X

Perception Decision Control

Brake
Control

Steering
Control

Throttle
Control

Prediction

Path	
Planning

Obstacle	
Avoidance

Object	
Tracking

Localization

Object	
Recognition

Fig. 2. Major components in intelligent automotive systems.

Perception: An intelligent automotive system typically em-
ploys a number of heterogeneous sensors for perceiving the
environment, such as LiDARs, radars, GPS, inertial measure-
ment unit (IMU), sonars, and cameras. The multi-modal inputs
from these sensors are fused and analyzed to improve system
reliability and safety [2]. In particular, ML techniques are
widely used for processing the data collected by cameras, and
these vision-based ML modules significantly contribute to the
progress towards automated and cooperative driving [3], [4].

Some of the main perception tasks include object recog-
nition, localization and tracking, which identify and localize
the objects in the surrounding environment. In the early days,
template-based methods were used to detect vehicles [5] and
match objects [6]. Appearance-based methods were proposed
later, which feature a three-step pipeline: 1) select proper
features to represent data, 2) train a classifier with plentiful
training data, and 3) input the extracted features to the classi-
fier for identifying objects in new data.

Classical handcrafted features with classifiers have been
widely applied in intelligent automotive systems. A number
of approaches use general classifier, such as support vector
machine (SVM), with color or histogram of oriented gradients
(HOG) features to recognize traffic lights [7]–[12]. In [13],
HOG and SVM are used for traffic sign recognition and
enhanced by the fusion of camera and LiDAR data. In [14], an
SVM-based brake detection method is developed for collision
avoidance with the front vehicle. In [15], a vehicle detection
algorithm is proposed to detect and track headlights during
night time.

Moreover, perception methods have also been used for
drivers and pedestrians. To reduce the distraction from in-
terfaces, hand gesture recognition has been explored in ve-
hicles [16]–[20]. Driver activity recognition approaches such
as the one in [21] are proposed to monitor driver behavior
and determine take-over readiness. Approaches for detecting
pedestrians’ intention have also been developed [22].

The advancement of deep neural networks, especially con-
volutional neural network (CNN), has further propelled intelli-
gent automotive systems. For instance, instance-level segmen-
tation for autonomous driving is studied in [23]. CNN is used
to detect 3D objects in monocular images [24], with further
improvement that fuses LiDAR point cloud with RGB images
as inputs [25]. In [26], a unified, small, low-power fully-
convolutional neural network called SqueezeDet is developed
for real-time object detection in autonomous driving. In [27],
recurrent neural network (RNN) is used for inferring the
property of a dynamic object on the road.
Decision and Control: Based on the perception and un-
derstanding of the surrounding environment, an ML-based
decision engine in intelligent automotive systems aims at gen-
erating a safe and efficient action plan at real time, conducting
tasks such as prediction, path planning and obstacle avoidance.

There are a number of approaches that use ML techniques
to decide a driving action directly based on the sensory input.
Starting from the late 1980s, neural networks have been used
to map the camera image input directly to the steering angles,

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 2

with the objective to keep the car on the correct lane [28]–
[30]. Moreover, deep CNNs have been successfully applied for
obstacle avoidance [31], long-range prediction of traversabil-
ity [32], depth map estimation [33], estimation of affordance
for driving [34], and steering control [35]. More recently
in [36], an FCN-LSTM network architecture is adopted for
learning a generic driving model and predicting a distribution
over future egomotion from monocular camera observations
and previous states. As a popular policy learning method,
deep reinforcement learning (DRL) has also been applied in
deciding autonomous driving policy [37]–[42].

ML techniques have also been used for other control
functions in automotive systems such as engine management.
In [43], a neural network is used to predict specific fuel
consumption and exhaust temperature of a diesel engine for
various injection timings.

V2X Communication: ML techniques have been used to
address issues in V2X communication and connected vehicle
applications in general. In [44], [45], the authors provide a
detailed review of machine learning for vehicular networks.
In [46], a hybrid centralized strategy using k-means cluster-
ing is introduced to control congestion in vehicular ad hoc
networks (VANETs). In [47], LTE connectivity prediction
and vehicular traffic prediction are addressed with Poisson
dependency networks (PDN). A stacked autoencoder model is
further used to learn traffic flow features for prediction [48].
Moreover, multiple reinforcement learning models are intro-
duced for user association with load balancing [49], vertical
handoff in heterogeneous networks [50], routing for local
data storage in vehicular networks [51], and virtual resource
allocation on vehicular clouds [52], [53].

Applications and Challenges: Besides the effort from aca-
demic community, huge investment and great progress have
also been made in the industry for intelligent vehicles, with
ML techniques widely applied to various aspects of ADAS and
autonomous driving [54]. Companies such as Waymo, General
Motors, Mercedes-Benz, Audi, Tesla and Uber have conducted
extensive on-road testing of autonomous functions.

However, there are still significant challenges for fully
utilizing machine learning and realizing autonomy in vehicles.
In particular, the major challenges come from the safety-
critical and time-critical nature of automotive systems. First,
while ML techniques such as deep learning may provide
superb performance in most cases, it is hard to reason about
their worst case behavior and robustness in general. This is
especially true considering that the surrounding environment
is highly uncertain and rare scenarios may not be sufficiently
covered in training and testing. Without more assurance of
the robustness and stability of ML techniques, the functional
safety of vehicles cannot be guaranteed. Second, complex ML
algorithms are time-consuming and resource-intensive at run-
time. Current autonomous vehicle prototypes have to employ
expensive and power-hungry computing platforms that include
high-end GPUs and CPUs, together with expensive sensors.
The eventual commercialization of autonomous vehicles will

require much more economical and efficient platforms, whose
resource limitations will present significant challenges for ML
algorithms to meet the stringent timing constraints.

In the following two sections, we will discuss how the
safety-critical and time-critical aspects may be addressed for
applying ML techniques in intelligent automotive systems.

III. VERIFICATION AND TESTING FOR ML-BASED
AUTOMOTIVE SYSTEMS

For safety-critical intelligent automotive systems, it is es-
sential to validate the correctness of both the design of its
perception, decision and control algorithms and the soft-
ware/hardware implementation of these algorithms. In this sec-
tion, we focus on the correctness validation at the algorithmic
(functional) level for system control and decision making.

In traditional automotive systems, model-based control
(MBC) methods are prevalent. The control modules accept
sampled system state as input and make decisions based on
explicit models of the system dynamics, which are commonly
captured with differential or difference equations via rigor-
ous mathematical deduction. The validation of these MBC
modules can then be described as validating reachability
properties [55] or liveness properties [56], [57]. In the litera-
ture, a number of approaches have been developed for MBC
verification [58]–[60] and testing/simulation [61]–[63].

In emerging intelligent vehicles, data-driven control meth-
ods that are based on ML techniques have shown great
promises. These methods do not require building explicit
physical models, but rather learn the control strategy directly
from training data (or sensing data at runtime). Compared with
MBC, such data-driven methods could be more effective (and
easier to develop) for realizing autonomous functions that in-
volve complex system dynamics and surrounding environment.
In particular, methods that are based on deep neural network
(DNN) have become popular. They are significantly different
from MBC on the following aspects.

• “Black box” property: Even though the parameters in a
trained DNN are visible, it is not clear how they relate
to properties such as reachability and liveness. When con-
ducting validation, DNNs are often viewed as black boxes.
• End-to-end control: As using multiple sequential neural

networks may accumulate inaccuracy, DNNs have been
used for end-to-end control, where the system accepts as
input the sensor data (particularly camera images), rather
than the abstracted system state.

These unique aspects bring more challenges to the validation
of DNNs. For better discussion of the state-of-the-arts, we
formulate the general validation problem as follows.

Problem 1: Given a neural network that implements a
function y = f(x) based on the training data set X ′, the
associated complete input space X and a property P , we hope
to have the following conclusion:

∀x′ ∈ X ′, P (f(x′)) = true

=⇒ ∀x ∈ X , P (f(x)) = true

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 3

Intuitively, we expect all the possible input should share some
similarity with the training data on the property P .

In the following, we will discuss current approaches for
DNN validation, including both verification and testing.

A. Verification

The verification of DNNs aims at checking the property P
of a DNN f under all the possible inputs X . However, we
may find it intractable when we hope to use this definition to
study DNNs, for the following two reasons:

• Ill-defined X : In most cases, especially in DNNs that accept
images or sound as input, it is difficult to define an ideal
feasible input space X . For instance, we hope to learn a
DNN that can precisely recognize images of “human” to
avoid accidents. However, it is almost impossible to define
a set that contains all the “human” images.
• Vague P : Different from MBC, the necessary properties of

a DNN are not quite clear yet. For instance, reachability
is a general property in dynamic systems that essentially
describes whether a state can be reached, however, it has
no practical meaning for a DNN.

Due to the above reasons, we can find that current works
on DNN verification mainly limit to one property, namely
local robustness. This property receives much attention in the
recent years due to a counterintuitive observation that even
a very tiny perturbation of a correctly classified input can
cause the mislabeling of a DNN [64]. We refer to this kind of
mislabeling points as adversarial examples. Local robustness
can be formally defined as follows:

Definition 1: A DNN f is said to be r-local robust at an
input x0 with the correct label c0, if

∀x′ ∈ X ′ , {x0}, f(x′)[c0] ≥ max
c 6=c0

f(x′)[c0]

=⇒ ∀x ∈ X , Br(x0), f(x)[c0] ≥ max
c 6=c0

f(x)[c0]
(1)

where Br(x) represents ball centered on x with radius r under
certain metric ‖·‖p and y[c] represents the component of y with
respect to the label c. We say

r0 = sup{r | ∀x′ ∈ Br(x0), f(x′)[c0] ≥ max
c 6=c0

f(x′)[c0]}

is the minimum adversarial distortion at x0 for f [65].
Local robustness describes that a DNN should be smooth

in some degree and keep its judgment within a small neigh-
borhood of an input. Therewith, we discuss two main method-
ologies that have been proposed to address this problem.

Precise Computing: Some approaches try to compute the
exact r0. Note that for networks with rectified linear unit
(ReLU), the activation function ReLU is piece-wise linear and
thus can be encoded as linear constraints by introducing slack
binary variables based on Big-M convexification methods.
Therefore, an intuitive solution is to transform all the ReLU
functions by the above technique first and then compute the
minimum adversarial examples r0 by mixed integer linear
programming (MILP) [66]–[69].

Alternatively, if we can verify whether there exist adversar-
ial examples inside Br(x0) for a given radius r, the bisection
method can be used to find the exact r0 [70]. Based on
this idea, researchers have considered use different ways to
treat the ReLU function and then verify it using satisfiability
modulo theory (SMT) techniques. In [71], the authors linearly
over-approximate the ReLU and other piece-wise functions
by a triangle to reduce the searching space, and then apply
SMT to efficiently solve the problem. In [72], the authors
only split the ReLU function into two linear constraints on
demand, which we will call it lazy splitting, to reduce the
problem scale.

However, as pointed in [72], verifying the local robustness
for a general ReLU DNN is NP-complete. The above precise
approaches can hardly handle large networks.

Lower Bound Estimation: Another direction is to find
the lower bound of the minimum adversarial distortion r0.
Currently works mainly fall into three categories: duality
theory based approach, layer-by-layer technique, and function
smoothness analysis.

Note that the exact r0 can be obtained directly by solving
a maximization problem that consists of a simple objective
function (r) and complex constraints (the network description
and the robustness property). Therefore a natural idea is
to adopt the duality theory to get the lower bound of r0.
The dual minimization problem has simple constraints and
is much easier to develop optimization techniques for higher
efficiency. The authors in [73] linearly over-approximate the
ReLU network using the similar idea of [71], and encode
the overall problem as linear programming. Then, the dual
problem of the linear programing is considered. Differently,
the authors in [74] consider the Lagrangian dual problem,
which does not limit to linear programming and thus can be
applied on other DNNs, such as Sigmoid networks.

Layer-by-layer technique is one of the most popular
methodologies to solve this problem. The basic idea is to
analyze the impact on the propagation of input set Br(x0)
through layers of the network, and then check if r is a lower
bound by observing the output of the final layer. The key
is to find an appropriate way to approximate the output set
of each layer, otherwise the problem degenerates to precise
computation of r0 and becomes time-consuming. The main
difference among the existing works in this category lies
on the approximation techniques. In [65], the authors adopt
an individual hyper-rectangle to approximate the output set.
In [75] and [76], the authors propose to use multiple hyper-
rectangles to cover the output set of each layer, but with
different construction methods. In [77], polyhedra are used
for approximation. In [78], polyhedra are used with a different
way of construction based on abstract interpretation technique.
In [79], symbolic intervals are used to describe the polyhedra,
which makes the over-approximation further tight. It is worthy
noting that a tighter over-approximation leads to a better
estimation of r0 in general, but with greater computational
load.

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 4

Function smoothness analysis is the most recent trend to
study the robustness property, which we believe is a promis-
ing direction for understanding DNNs. As stated before, the
local robustness property indicates the smoothness of DNNs.
In [80], the authors discuss the local robustness under the
precondition of local Lipschitz continuity and differentiability.
This is extended by removing the differentiability requirement
based on the extreme theory in [81]. However, how to explore
the weakest precondition still remains an open question.

Unfortunately, a good estimation of r0 (in the case of l1-
norm) of a general ReLU is proven to be unsolvable with
polynomial time algorithms if NP 6= P [65]. However, it is
still possible to find a fast way for specific ReLU networks.

To conclude, few properties have been discussed for veri-
fying DNNs – currently local robustness is the only property
with clear practical meaning. To better understand and validate
DNNs, more properties should be defined and analyzed.

B. Testing

In testing, the performance of DNNs are evaluated on
specific test suites. In general, the DNN testing problem can
be defined as:

Problem 2: Given a neural network that implements a
function y = f(x) based on the training data set X ′, the
associated complete input space X and a property P . Further
given a test suite Xt ⊂ X with test cases xt ∈ Xt and the
corresponding expected outputs yt ∈ Yt, the testing result ε
can be expressed as:

ε =
|{xt|P (f(xt)) = yt}|

|Xt|
Whether ε could credibly reveal the performance of the

tested DNN greatly depends on the inherent quality of Xt.
Koopman and Wagner have pointed out several potential
challenges of testing DNNs in [82]:
• Credibility of Xt: Due to the nature of autonomous system,

a completely random test suite often leads to misleading
performance evaluation. Generally, corner cases are more
likely to expose unexpected behaviors. However, manually
collecting corner cases could be hard, while automatic
synthesis may bring the risk of overfitting.
• Determination of Yt: Creating correct labels for a test suite

often requires huge amount of work. If defects in training
data or training programs are found, more validation data
has to be collected for revalidation, as the updated system
could have a dramatically different set of learned rules.
Traditionally there are two ways to obtain Xt: by manually

collecting real-world scenarios and by automatically generat-
ing synthesized test suites. For DNN testing, several works
have been done to obtain real-world test suites for vision
benchmarks; while most current works focus on generating
high-quality test suites that could reveal unexpected behaviors,
based on different coverage criteria. The principles of test case
generation and evaluation are greatly inspired by techniques
used in traditional software validation. We will discuss these
two types of efforts more in below.

Vision Benchmark Suites: Recently there has been an in-
creasing availability of large annotated datasets for computer
vision tasks relevant to autonomous driving. The Middlebury
vision benchmark suite provides a dataset whose images are
mainly collected from indoor scenes [83]. It provides evalua-
tions for 5 different benchmarks such as stereo and optical flow
algorithms. The KITTI vision benchmark suite focuses on real-
world urban driving scenarios [84]. It provides evaluation for 9
different benchmarks, whose datasets are captured by driving
around the mid-size city of Karlsruhe in rural areas and on
highways. The Robust Vision Challenge is an algorithm testing
website that combines 8 different test suites and provides
evaluation for 6 benchmarks [85].
Automatic Test Generation based on Coverage Criteria:
Manually collected test suites provide real-world emulation,
however require high equipment and time cost for gleaning
comprehensive data. With the help of automatic test generation
based on various coverage criteria, we are more likely to reveal
erroneous behaviors in DNNs.

1) Neuron coverage: Generally for a software implementa-
tion, if a test suite could have more of its source code executed
during testing, it would have a lower chance of containing
undetected bugs [86]. For DNN testing, Pei et al. raise the
concept of neuron coverage in [87], and develop an algorithm
based on this criteria called DeepXplore. More specifically, let
ReLU(x) denote the set of hidden neurons that are activated
according to ReLU function , Nh denote the set of all hidden
neurons, and |Nh| denote the number of elements in set Nh.
The neuron coverage for test suite Xt is:

Covneuron(Xt) =
|
⋃
{ReLU(xt)|xt ∈ Xt}|

|Nh|
. (2)

The key idea of DeepXplore is to take unlabeled test input as
seeds to generate new tests that maximize neuron coverage,
which could be formulated as an optimization problem and
solved by a gradient-based algorithm. However, there are two
limitations in DeepXplore: 1) differential testing requires at
least two different DNNs with the same functionality, and
2) whether the generated test cases could fit into real-world
situations is not clear.

Several approaches have been proposed to overcome the
above limitations. Tian et al. present the framework of
DeepTest in [88] to eliminate the requirement of multiple
DNNs. Inspired by the metamorphic testing in [89], DeepTest
leverages metamorphic relations to support automatic labeling
on a single DNN. Zhang et al. present the framework of
DeepRoad in [90] to generate accurate driving scenes. Deep-
Road employs a generative adversarial network (GAN) based
technique described in [91] to provide authentic driving scenes
with various weather conditions. It leverages UNIT [92], a
DNN-based method to perform unsupervised image syntheses.

However, as pointed out in [93], a test suite with high neuron
coverage is not sufficient to increase confidence for DNNs in
safety-critical domains.

2) MC/DC coverage: Based on the traditional modified
condition/decision coverage (MC/DC) criterion [94], Sun et

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 5

al. present a MC/DC coverage criteria for DNNs in [93]. The
key idea of MC/DC coverage is that if a decision can be made,
all the possible conditions contributing to that decision must be
tested. In DNNs, the output of a single neuron can be seen as a
decision, where contributing conditions are values of neurons
in the previous layer. In [93], four MC/DC criteria are given to
evaluate whether two test cases could cover the relationship
between two single neurons or two layers of neurons. Take
one criterion as an example: Let ni,j denote the ith neuron in
the jth layer. If two test cases xt1 and xt2 cause a neuron n1,2
to show different activation status but n1,1 is the only neuron
in layer 1 that shows different activation status under the two
tests, then these two neurons are considered covered by the
tests xt1 and xt2.

Based on the MC/DC criteria, a test suite generating algo-
rithm DeepCover is also proposed in [93]: For each neuron
pairs in a DNN, recursively select a test case xt in the given
test suite and solve a linear programming problem to derive
a new test case x′t that maximizes MC/DC coverage and
minimizes deviation value. If xt and x′t are “close” under
certain metric and give different output values, then erroneous
behavior is detected. This algorithm outputs a generated test
suite Xt with maximum MC/DC coverage and a subset X ′t
that contains test cases revealing erroneous behaviors.

3) CT coverage: Ma et al. present a set of coverage criteria
for DNNs in [95] based on the concept of combinatorial testing
(CT), together with a test generation algorithm DeepCT.

Assume there are |N | neurons in a DNN. Each neuron can
be activated or inactivated, resulting in altogether 2|N | different
neuron statuses. Instead of exhaustively testing all possible
cases, CT aims at taking each pair of or each triple of neurons
into consideration and test their combinations.

Three CT criteria with similar logic are given in [95] to
evaluate coverage behavior of test cases on DNNs. Take one
criterion as an example: Given a constant t < |N | where
N is the set of all neurons, we call the subset θ ∈ N a
t-way combination if |θ| = t. Let Θt be the set of all t-
way combinations of neurons in N , and let FCNA(T, θ)
to represent that all neuron-activation configurations of θ
are covered by test suite Xt. The t-way combination sparse
coverage of Xt is given by

Covcomb−sparse(Xt, t) =
|{θ ∈ Θt|FCNA(Xt, θ)}|

|Θt|
. (3)

Based on a given distance metric, DeepCT recurrently
generates test cases that are considered “close”, until all CT
coverage targets are covered or processed, or a time limit is hit.
This algorithm outputs a generated test suite Xt with maximum
CT coverage and a subset X ′t revealing erroneous behaviors.
Test Suite Evaluation: Besides above works on develop-
ing coverage criteria, Ma et al. explore a mutation testing
technique for DNNs in [96], which focuses on developing a
systematic way to evaluate and understand the quality of test
suite. Specifically, given a program f , a set of faulty programs
F ′ (mutants) are created based on predefined rules (mutation
operators), each of which slightly modifies f . A given test

suite Xt is executed on both f and F ′, and a mutant f ′ ∈ F ′
is called killed if its test result is different from that of f .
Define mutation score as the ratio of killed mutants to all
generated mutants. A test suite Xt with a higher mutation score
is more likely to capture real defects in the original program
and provide better quality. Since both training suite and neuron
structure can influence the performance of a DNN, two types
of mutation testing, source-level (injecting error in the training
data) and model-level (injecting error in the training program),
are needed. Two DNN-specific mutation testing metrics are
proposed to provide quantitative measurement of test quality.

While the above testing approaches have shown promising
results under certain conditions, they are mainly empirically
based. The discovery of a theoretically credible test suite
generation method will be valuable and will need further
development of the interpretation of DNN structures.

IV. SYSTEM IMPLEMENTATION OF ML FUNCTIONS IN
AUTOMOTIVE SYSTEMS

Automotive systems are time-critical systems, in which
many functions have strict timing constraints. For example,
an obstacle avoidance function will need to sense the environ-
ment, process the input, and make a control decision within a
hard deadline. The consequence of violating such end-to-end
(sensor-to-actuator) latency deadline could be disastrous. Thus,
validating the software/hardware implementation of ML func-
tions, in particular the timing property of such implementation,
is as important as validating those functions themselves.

However, the functional, software and hardware complexity
has been rapidly increasing in intelligent automotive systems,
especially with the development of ML techniques. This
presents significant challenges for system implementations and
for the validation of their timing behavior, as discussed below.

A. Increasing Functional and Software Complexity

The development of ML techniques has significantly in-
creased functional complexity in automotive systems. The
ML-based functions collect a large amount of data from
various sensors and generate many intermediate results for
perception, decision making and control. Typical neural net-
works may contain millions of parameters [97], [98] and
are extremely computational intensive. Even the previously-
mentioned SqueezeDet, a light-weight DNN, requires about
1010 FLOPs (float-point operations) for each image. When
the sampling frequency is 20 FPS, the computation capacity
needed for this single detection task will be at least 200
GFLOPS (giga-FLOPs per second).

At the software layer, the implementation of automotive
functions is subject to standards such as ISO 15504 [99] and
ISO 26262 [100]. ISO 15504 provides a reference model at a
high abstraction level for software development management,
while ISO 26262 standardizes function safety for the automo-
tive development process. However, these standards usually
lack specification and interpretation for neural networks [101].
Furthermore, while software structures such as dynamic ob-
jects, implicit conversion and recursions are not recommended

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 6

in these standards, the conventional development of neural
network functions usually ignores these aspects.

Besides implementation standards, another issue is the cer-
tification of ML functions. As automotive systems are safety-
critical and time-critical, a systematic way for source code
inspection and worst-case scenario estimation is needed for
deterministic system analysis.

B. Automotive Hardware Complexity

Fig. 3 shows an illustration of possible in-vehicle hardware
architecture for future automotive systems, where computing
resources such as ECUs and GPUs are connected via buses
such as Ethernet, CAN, and FlexRay.

Antenna
for vehicular network

CAN bus
Ethernet ECU

FlexRay bus

Sensor

Gateway

Router ECU
ECU ECU

ECU ECUOBD-II port

Sensor

Sensor

Sensor

Sensor

Sensor

Ethernet

GPU
FPGA

Switch

Switch

Switch

Fig. 3. Illustration of in-vehicle hardware architecture.

In the design of automotive system, there is a transition from
the federated architecture, where each function is implemented
on an individual ECU as a black box, to the integrated
architecture, where multiple functions can be executed on
the same ECU/GPU. Furthermore, with the development of
computationally-intensive ML functions, the computing plat-
form has to become more advanced and support more con-
current execution. For instance, the latest Nvidia platform for
autonomous application, Jetson AGX Xavier [102], has an 8-
core ARM 64-bit CPU, a 512-core GPU and two deep learning
accelerators. This level of parallelism presents new challenges
to timing behavior prediction. For instance, the blocking effect
due to GPU synchronization is poorly documented [103], [104]
and some implicit synchronization mechanisms may not be
clear to software developers. This makes it challenging for
the worst-case execution time analysis of ML functions on
GPUs. The adoption of multi-core ECUs [105], [106] also
leads to more resource sharing and contention among different
functions, and increases the difficulty for timing prediction.

The in-vehicle communication for future automotive sys-
tems is also becoming more powerful and more complex. A
video stream of 640× 480 RGB images in 20 FPS requires a
bandwidth of at least 60 MBps, which far exceeds the capacity
of currently prevalent CAN bus protocol (typically allows up
to 1Mbps). New high-speed automotive bus protocols, such
as time-sensitive networking [107], [108] and time-triggered
Ethernet [109] have been proposed, but they also present new
challenges to system design and timing analysis. Furthermore,
techniques could be developed to reduce the communication

requirements, e.g., by transferring compressed data rather than
raw sensing input or by skipping the processing of unimportant
sensing input at the first place (similarly as the fast-forward
strategy proposed in [110]).

C. Timing Validation

It is essential to ensure that the software/hardware imple-
mentation of automotive functions, in particular ML functions,
meets the strict system timing constraints. This requires com-
prehensive timing analysis and validation across system layers.
For instance, the worst-case execution time of a software task
needs to be carefully analyzed. The worst-case response time
of a task, which takes into account of the interferences from
other tasks, needs to be derived and ensured to be within the
task’s deadline. Similar analysis also needs to be conducted for
communication messages. Then, the end-to-end latency along
a functional path (with a chain of tasks and messages) needs
to be analyzed and checked against its deadline.

In the literature, a vast number of works have been proposed
for timing analysis and validation of traditional automotive
systems. The development of ML functions brings new chal-
lenges, some of which result from the growing complexity
of functionality, software and hardware, as discussed above.
In addition, the usage of ML functions also has significant
impact on a variety of system metrics, such as security,
fault tolerance, extensibility, and energy consumption. These
metrics closely relate to system timing behavior, and their
tradeoffs with schedulability and performance have to be
addressed in a holistic fashion. For instance, we have demon-
strated the significant tradeoffs among latency, fault tolerance,
and extensibility in designing automotive software in [111]–
[114], the tradeoffs among security, control performance,
and schedulability in [115]–[118], and the tradeoffs among
modularity, reusability, robustness, performance, and schedu-
lability in [119]–[121]. The consideration of ML functions
will require new models of these metrics that take into
account of ML functionality (e.g., execution behavior of neural
networks) and the underlying hardware platform (e.g., GPUs
and new bus protocols), new analysis techniques, and new
tradeoff/optimization algorithms. New timing models may also
be needed to more accurately capture the timing behavior of
ML functions.

V. CONCLUSION

In this paper, we reviewed the application of machine learn-
ing techniques in intelligent automotive systems, and discussed
the resulting challenges to system design and validation. We
highlighted those challenges that come from the safety-critical
and time-critical nature of automotive systems, and elaborated
the importance of developing new verification, testing, and
timing analysis techniques to address these challenges. As
intelligent automotive systems becoming reality, the develop-
ment of such new design automation methods and tools has
become a critical and pressing need for automotive industry.

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 7

ACKNOWLEDGMENT

This work is supported partially by the National Sci-
ence Foundation grants CNS-1839511, CCF-1834701, CCF-
1834324, and IIS-1724341.

REFERENCES

[1] A. Lindgren and F. Chen, “State of the art analysis: An overview of
advanced driver assistance systems (adas) and possible human factors
issues,” Human factors and economics aspects on safety, pp. 38–50,
2006.

[2] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, “Caad: Computer
architecture for autonomous driving,” arXiv preprint arXiv:1702.01894,
2017.

[3] B. Ranft and C. Stiller, “The role of machine vision for intelligent
vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp.
8–19, 2016.

[4] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review and
future perspectives,” IEEE Intelligent Transportation Systems Maga-
zine, vol. 6, no. 4, pp. 6–22, 2014.

[5] M. Bertozzi, A. Broggi, and A. Fascioli, “Vision-based intelligent
vehicles: State of the art and perspectives,” Robotics and Autonomous
systems, vol. 32, no. 1, pp. 1–16, 2000.

[6] A. Bensrhair, M. Bertozzi, A. Broggi, P. Miche, S. Mousset, and
G. Toulminet, “A cooperative approach to vision-based vehicle detec-
tion,” in IEEE 4th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2001, pp. 207–212.

[7] Z. Ozcelik, C. Tastimur, M. Karakose, and E. Akin, “A vision based
traffic light detection and recognition approach for intelligent vehicles,”
in IEEE International Conference on Computer Science and Engineer-
ing (UBMK), 2017, pp. 424–429.

[8] J. L. Binangkit and D. H. Widyantoro, “Increasing accuracy of traffic
light color detection and recognition using machine learning,” in IEEE
10th International Conference on Telecommunication Systems Services
and Applications (TSSA), 2016, pp. 1–5.

[9] M. Salarian, A. Manavella, and R. Ansari, “A vision based system for
traffic lights recognition,” in IEEE SAI Intelligent Systems Conference
(IntelliSys), 2015, pp. 747–753.

[10] M. Michael and M. Schlipsing, “Extending traffic light recognition:
Efficient classification of phase and pictogram,” in International Joint
Conference on Neural Networks (IJCNN), 2015, pp. 1–8.

[11] Y. Ji, M. Yang, Z. Lu, and C. Wang, “Integrating visual selective atten-
tion model with hog features for traffic light detection and recognition,”
in IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 280–285.

[12] S. Saini, S. Nikhil, K. R. Konda, H. S. Bharadwaj, and N. Ganeshan,
“An efficient vision-based traffic light detection and state recognition
for autonomous vehicles,” in IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 606–611.

[13] L. Zhou and Z. Deng, “Lidar and vision-based real-time traffic sign
detection and recognition algorithm for intelligent vehicle,” in IEEE
17th International Conference on Intelligent Transportation Systems
(ITSC), 2014, pp. 578–583.

[14] X. Wang, J. Tang, J. Niu, and X. Zhao, “Vision-based two-step brake
detection method for vehicle collision avoidance,” Neurocomputing,
vol. 173, pp. 450–461, 2016.

[15] X.-Z. Chen, K.-K. Liao, Y.-L. Chen, C.-W. Yu, and C. Wang, “A vision-
based nighttime surrounding vehicle detection system,” in IEEE 7th
International Symposium on Next Generation Electronics (ISNE), 2018,
pp. 1–3.

[16] E. Ohn-Bar and M. M. Trivedi, “Hand gesture recognition in real time
for automotive interfaces: A multimodal vision-based approach and
evaluations,” IEEE transactions on intelligent transportation systems,
vol. 15, no. 6, pp. 2368–2377, 2014.

[17] A. Riener, A. Ferscha, F. Bachmair, P. Hagmüller, A. Lemme, D. Mut-
tenthaler, D. Pühringer, H. Rogner, A. Tappe, and F. Weger, “Stan-
dardization of the in-car gesture interaction space,” in Proceedings of
the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications. ACM, 2013, pp. 14–21.

[18] F. Althoff, R. Lindl, L. Walchshausl, and S. Hoch, “Robust multimodal
hand-and head gesture recognition for controlling automotive infotain-
ment systems,” VDI BERICHTE, vol. 1919, p. 187, 2005.

[19] C. Endres, T. Schwartz, and C. A. Müller, “Geremin: 2d microgestures
for drivers based on electric field sensing,” in Proceedings of the 16th
international conference on Intelligent user interfaces. ACM, 2011,
pp. 327–330.

[20] M. Zobl, R. Nieschulz, M. Geiger, M. Lang, and G. Rigoll, “Gesture
components for natural interaction with in-car devices,” in International
Gesture Workshop. Springer, 2003, pp. 448–459.

[21] C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel, “Driver-
activity recognition in the context of conditionally autonomous driv-
ing,” in IEEE 18th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2015, pp. 1652–1657.

[22] S. Köhler, M. Goldhammer, K. Zindler, K. Doll, and K. Dietmeyer,
“Stereo-vision-based pedestrian’s intention detection in a moving ve-
hicle,” in IEEE 18th International Conference on Intelligent Trans-
portation Systems (ITSC), 2015, pp. 2317–2322.

[23] Z. Zhang, S. Fidler, and R. Urtasun, “Instance-level segmentation for
autonomous driving with deep densely connected mrfs,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 669–677.

[24] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3d object detection for autonomous driving,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 2147–2156.

[25] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 1, no. 2, 2017, p. 3.

[26] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time
object detection for autonomous driving.” in CVPR Workshops, 2017,
pp. 446–454.

[27] M. Fathollahi and R. Kasturi, “Autonomous driving challenge: To infer
the property of a dynamic object based on its motion pattern,” in
European Conference on Computer Vision (ECCV). Springer, 2016,
pp. 40–46.

[28] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[29] ——, Neural network perception for mobile robot guidance. Springer
Science & Business Media, 2012, vol. 239.

[30] J. Koutnı́k, G. Cuccu, J. Schmidhuber, and F. Gomez, “Evolving large-
scale neural networks for vision-based torcs,” 2013.

[31] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road
obstacle avoidance through end-to-end learning,” in Advances in neural
information processing systems, 2006, pp. 739–746.

[32] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu,
U. Muller, and Y. LeCun, “Learning long-range vision for autonomous
off-road driving,” Journal of Field Robotics, vol. 26, no. 2, pp. 120–
144, 2009.

[33] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deepflow:
Large displacement optical flow with deep matching,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2013,
pp. 1385–1392.

[34] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV),
2015, pp. 2722–2730.

[35] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[36] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[37] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[38] G.-H. Liu, A. Siravuru, S. Prabhakar, M. Veloso, and G. Kantor,
“Learning end-to-end multimodal sensor policies for autonomous nav-
igation,” arXiv preprint arXiv:1705.10422, 2017.

[39] C. Ye, H. Ma, X. Zhang, K. Zhang, and S. You, “Survival-oriented re-
inforcement learning model: An effcient and robust deep reinforcement

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 8

learning algorithm for autonomous driving problem,” in International
Conference on Image and Graphics. Springer, 2017, pp. 417–429.

[40] R. Liaw, S. Krishnan, A. Garg, D. Crankshaw, J. E. Gonzalez,
and K. Goldberg, “Composing meta-policies for autonomous driv-
ing using hierarchical deep reinforcement learning,” arXiv preprint
arXiv:1711.01503, 2017.

[41] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” arXiv preprint arXiv:1704.03952,
2017.

[42] A. Mehta, A. Subramanian, and A. Subramanian, “Learning end-to-end
autonomous driving using guided auxiliary supervision,” arXiv preprint
arXiv:1808.10393, 2018.

[43] A. Parlak, Y. Islamoglu, H. Yasar, and A. Egrisogut, “Application
of artificial neural network to predict specific fuel consumption and
exhaust temperature for a diesel engine,” Applied Thermal Engineering,
vol. 26, no. 8-9, pp. 824–828, 2006.

[44] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning
for vehicular networks: Recent advances and application examples,”
IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94–101, 2018.

[45] L. Liang, H. Ye, and G. Y. Li, “Towards intelligent vehicular networks:
A machine learning framework,” arXiv preprint arXiv:1804.00338,
2018.

[46] N. Taherkhani and S. Pierre, “Centralized and localized data congestion
control strategy for vehicular ad hoc networks using a machine learning
clustering algorithm,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 11, pp. 3275–3285, 2016.

[47] C. Ide, F. Hadiji, L. Habel, A. Molina, T. Zaksek, M. Schreckenberg,
K. Kersting, and C. Wietfeld, “Lte connectivity and vehicular traffic
prediction based on machine learning approaches,” in IEEE 82nd
Vehicular Technology Conference (VTC Fall), 2015, pp. 1–5.

[48] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang et al., “Traffic flow
prediction with big data: A deep learning approach.” IEEE Transactions
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[49] Z. Li, C. Wang, and C.-J. Jiang, “User association for load balancing in
vehicular networks: An online reinforcement learning approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 8, pp.
2217–2228, 2017.

[50] Y. Xu, L. Li, B.-H. Soong, and C. Li, “Fuzzy q-learning based vertical
handoff control for vehicular heterogeneous wireless network,” in IEEE
International Conference on Communications (ICC), 2014, pp. 5653–
5658.

[51] C. Wu, T. Yoshinaga, Y. Ji, T. Murase, and Y. Zhang, “A reinforcement
learning-based data storage scheme for vehicular ad hoc networks,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 6336–
6348, 2017.

[52] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and
computing for connected vehicles: A deep reinforcement learning
approach,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1,
pp. 44–55, 2018.

[53] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Reinforcement
learning for resource provisioning in the vehicular cloud,” IEEE
Wireless Communications, vol. 23, no. 4, pp. 128–135, 2016.

[54] W. Brenner and A. Herrmann, “An overview of technology, benefits
and impact of automated and autonomous driving on the automotive
industry,” in Digital Marketplaces Unleashed. Springer, 2018, pp.
427–442.

[55] C. Le Guernic and A. Girard, “Reachability analysis of linear systems
using support functions,” Nonlinear Analysis: Hybrid Systems, vol. 4,
no. 2, pp. 250–262, 2010.

[56] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of ltl safety
properties in hybrid systems,” International Journal on Software Tools
for Technology Transfer, vol. 15, no. 4, pp. 305–320, 2013.

[57] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Verifying ltl
properties of hybrid systems with k-liveness,” ser. Computer Aided
Verification. Springer International Publishing, 2014, Conference
Proceedings, pp. 424–440.

[58] C. Huang, X. Chen, W. Lin, Z. Yang, and X. Li, “Probabilistic safety
verification of stochastic hybrid systems using barrier certificates,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, pp. 1–19, 2017.

[59] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems,” ser. Computer Aided Verification.
Springer Berlin Heidelberg, 2011, Conference Proceedings, pp. 585–
591.

[60] Z. Yang, C. Huang, X. Chen, W. Lin, and Z. Liu, “A linear pro-
gramming relaxation based approach for generating barrier certificates
of hybrid systems,” ser. FM 2016: Formal Methods. Springer
International Publishing, 2016, Conference Proceedings, pp. 721–738.

[61] C. G. Cassandras, M. I. Clune, and P. J. Mosterman, “Hybrid system
simulation with simevents,” IFAC Proceedings Volumes, vol. 39, no. 5,
pp. 267–269, 2006.

[62] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” ser. Computer Aided Verification. Springer Berlin
Heidelberg, 2010, Conference Proceedings, pp. 167–170.

[63] F. Bergero and E. Kofman, “Powerdevs: a tool for hybrid system
modeling and real-time simulation,” SIMULATION, vol. 87, no. 1-2,
pp. 113–132, 2011.

[64] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” arXiv preprint arXiv:1608.04644, 2016.

[65] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning,
I. S. Dhillon, and L. Daniel, “Towards fast computation of certified
robustness for relu networks,” arXiv preprint arXiv:1804.09699, 2018.

[66] C.-H. Cheng, G. Nührenberg, and H. Ruess, “Maximum resilience of
artificial neural networks,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2017, Conference
Proceedings, pp. 251–268.

[67] M. Fischetti and J. Jo, “Deep neural networks as 0-1 mixed integer
linear programs: A feasibility study,” arXiv preprint arXiv:1712.06174,
2017.

[68] A. Lomuscio and L. Maganti, “An approach to reachability analysis for
feed-forward relu neural networks,” arXiv preprint arXiv:1706.07351,
2017.

[69] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” arXiv preprint
arXiv:1711.07356, 2017.

[70] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar,
“Piecewise linear neural network verification: a comparative study,”
arXiv preprint arXiv:1711.00455, 2017.

[71] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” ser. Automated Technology for Verification and Analysis.
Springer International Publishing, 2017, Conference Proceedings, pp.
269–286.

[72] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification, 2017,
Conference Proceedings, pp. 97–117.

[73] J. Z. Kolter and E. Wong, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” arXiv preprint
arXiv:1711.00851, 2017.

[74] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli, “A dual
approach to scalable verification of deep networks,” arXiv preprint
arXiv:1803.06567, 2018.

[75] S. W. X. Huang, M. Kwiatkowska and M. Wu., “Safety verification
of deep neural networks,” in International Conference on Computer
Aided Verification, 2017, Conference Proceedings, pp. 3–29.

[76] W. Xiang and T. T. Johnson, “Reachability analysis and safety
verification for neural network control systems,” arXiv preprint
arXiv:1805.09944, 2018.

[77] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set computation
and safety verification for neural networks with relu activations,” arXiv
preprint arXiv:1712.08163, 2017.

[78] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai 2: Safety and robustness certification of neural
networks with abstract interpretation,” in IEEE Symposium on Security
and Privacy (SP), 2018, Conference Proceedings.

[79] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” arXiv preprint
arXiv:1804.10829, 2018.

[80] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness
of a classifier against adversarial manipulation,” in Advances in Neural
Information Processing Systems, 2017, Conference Proceedings, pp.
2266–2276.

[81] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh,
and L. Daniel, “Evaluating the robustness of neural networks: An
extreme value theory approach,” arXiv preprint arXiv:1801.10578,
2018.

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 9

[82] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[83] D. Scharstein and R. Szeliski, “Middlebury stereo vision page,” 2002.
[84] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the kitti vision benchmark suite,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2012, pp. 3354–3361.

[85] (2018) Robust vision challenge. [Online]. Available: http://www.
robustvision.net/index.php

[86] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code
coverage metric for functional simulation,” in Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design. IEEE
Computer Society, 1997, pp. 418–425.

[87] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles. ACM, 2017, pp. 1–18.

[88] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 303–314.

[89] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, Hong Kong University of
Science and Technology, Hong Kong, Tech. Rep., 1998.

[90] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic autonomous driving system testing,” arXiv
preprint arXiv:1802.02295, 2018.

[91] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[92] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Advances in Neural Information Processing
Systems, 2017, pp. 700–708.

[93] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural networks,”
arXiv preprint arXiv:1803.04792, 2018.

[94] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A
practical tutorial on modified condition/decision coverage,” 2001.

[95] L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y. Wang,
“Combinatorial testing for deep learning systems,” arXiv preprint
arXiv:1806.07723, 2018.

[96] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep learning
systems,” arXiv preprint arXiv:1805.05206, 2018.

[97] D. CireşAn, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column
deep neural network for traffic sign classification,” Neural networks,
vol. 32, pp. 333–338, 2012.

[98] M. Liang and X. Hu, “Recurrent convolutional neural network for ob-
ject recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 3367–3375.

[99] K. El-Emam and I. Garro, “Iso/iec 15504,” International Organization
for Standardization, 1999.

[100] I. ISO, “26262: Road vehicles-functional safety,” International Stan-
dard ISO/FDIS, vol. 26262, 2011.

[101] R. Salay and K. Czarnecki, “Using machine learning safely in au-
tomotive software: An assessment and adaption of software process
requirements in iso 26262,” arXiv preprint arXiv:1808.01614, 2018.

[102] NVIDIA Corporation, “Jetson agx xavier faq,”
https://developer.nvidia.com/embedded/faq#xavier-faq, 2018.

[103] N. Otterness, M. Yang, T. Amert, J. Bakita, J. H. Anderson, and
F. D. Smith, “Implicit gpu synchronization: A barrier to real-time cuda
workloads.”

[104] Tesla, “NVIDIA. CUDA 9.0 RC C Programming Guide,” http://docs.
nvidia.com/cuda-rc/cuda-c-programming-guide/index.html, 2017.

[105] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion, “Multi-source
and multicore automotive ecus-os protection mechanisms and schedul-
ing,” in IEEE International Symposium on Industrial Electronics (ISIE),
2010, pp. 3734–3741.

[106] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst,
“System level performance analysis for real-time automotive multicore
and network architectures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 7, pp. 979–
992, 2009.

[107] R. Queck, “Analysis of ethernet avb for automotive networks using
network calculus,” in IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012), July 2012, pp. 61–67.

[108] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing anal-
ysis of ethernet topologies with strict-priority and avb switching,” in
7th IEEE International Symposium on Industrial Embedded Systems
(SIES’12), June 2012, pp. 1–10.

[109] P. Hank, T. Suermann, and S. Müller, “Automotive ethernet, a holistic
approach for a next generation in-vehicle networking standard,” in
Advanced Microsystems for Automotive Applications 2012, G. Meyer,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–89.

[110] S. Lan, R. Panda, Q. Zhu, and A. K. Roy-Chowdhury, “Ffnet: Video
fast-forwarding via reinforcement learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 6771–6780.

[111] Q. Zhu, Y. Yang, M. D. Natale, E. Scholte, and A. Sangiovanni-
Vincentelli, “Optimizing the Software Architecture for Extensibility
in Hard Real-Time Distributed Systems,” the IEEE Transactions on
Industrial Informatics, vol. 6, no. 4, pp. 621–636, 2010.

[112] Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and A. Sangiovanni-
Vincentelli, “Optimizing Extensibility in Hard Real-Time Distributed
Systems,” in RTAS ’09: Proceedings of the 2009 15th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2009,
pp. 275–284.

[113] B. Zheng, Y. Gao, Q. Zhu, and S. Gupta, “Analysis and Optimization
of Soft Error Tolerance Strategies for Real-Time Systems,” in 2015
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), October 2015, pp. 55–64.

[114] H. Liang, Z. Wang, B. Zheng, and Q. Zhu, “Addressing extensibil-
ity and fault tolerance in can-based automotive systems,” in 2017
IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
Nov 2017.

[115] C. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli, “Security-
Aware Mapping for CAN-Based Real-Time Distributed Automotive
Systems,” in Computer-Aided Design (ICCAD), 2013 IEEE/ACM In-
ternational Conference on, 2013, pp. 115–121.

[116] C. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-Aware Map-
ping for TDMA-Based Real-Time Distributed Systems,” in Computer-
Aided Design (ICCAD), 2014 IEEE/ACM International Conference on,
Nov 2014, pp. 24–31.

[117] C. Lin, B. Zheng, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-
Aware Design Methodology and Optimization for Automotive
Systems,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 21, no. 1, pp. 18:1–18:26, December 2015.
[Online]. Available: http://doi.acm.org/10.1145/2803174

[118] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti, “Cross-
Layer Codesign for Secure Cyber-Physical Systems,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 5, pp. 699–711, May 2016.

[119] Q. Zhu, P. Deng, M. Di Natale, and H. Zeng, “Robust and Extensible
Task Implementations of Synchronous Finite State Machines,” in
Design, Automation Test in Europe Conference Exhibition (DATE),
2013, March 2013, pp. 1319–1324.

[120] P. Deng, F. Cremona, Q. Zhu, M. D. Natale, and H. Zeng, “A Model-
Based Synthesis Flow for Automotive CPS,” in Cyber-Physical Systems
(ICCPS), 2015 ACM/IEEE International Conference on, April 2015,
pp. 198–207.

[121] P. Deng, Q. Zhu, A. Davare, A. Mourikis, X. Liu, and M. D.
Natale, “An Efficient Control-Driven Period Optimization Algorithm
for Distributed Real-Time Systems,” IEEE Transactions on Computers,
vol. 65, no. 12, pp. 3552–3566, December 2016.

Paper AI 4.2 INTERNATIONAL TEST CONFERENCE 10

